

Kentucky Residential Compliance Study

MEEA Analysis of Potential Savings Midwest Building Energy Codes Conference November 16, 2017

Project Overview

<u>Purpose</u>: Establish residential energy code compliance baseline, and determine if focused training & support can improve compliance.

- 3-year, three phase, statewide program focused on new, single-family homes
 - Baseline Study
 - Intervention
 - ~2 years
 - Half-time Circuit Rider
 - 28 in-person training classes
 - Redo Baseline Study
- MEEA was the lead agency and partnered with the Department of Housing, Buildings and Construction (DHBC), and the Department of Energy Development and Independence (DEDI)

Project Overview

Project Team

- Chris Burgess/Ian Blanding/Alison Lindburg Good/ Adam Castillo (MEEA)
- Isaac Elnecave/ Kelsey Horton (MEEA alumni)
- George Mann (In-State Project Manager)
- Larry Mahaffey (Circuit Rider)
- Roger Banks/Ric McNees (DHBC)
- Lee Colten /Michael Kennedy (DEDI)
- Nigel Makela/Jolyn Green/Eric Makela/Dave Freelove/Bunch of Other Data Collectors (Cadmus – Data Collection)
- Brad Turner/Mike Barcik/Steve Herzlieb (Southface Training)
- Pacific Northwest National Laboratory (PNNL Analysis)
- Stakeholder Group

PHASE **ONE**

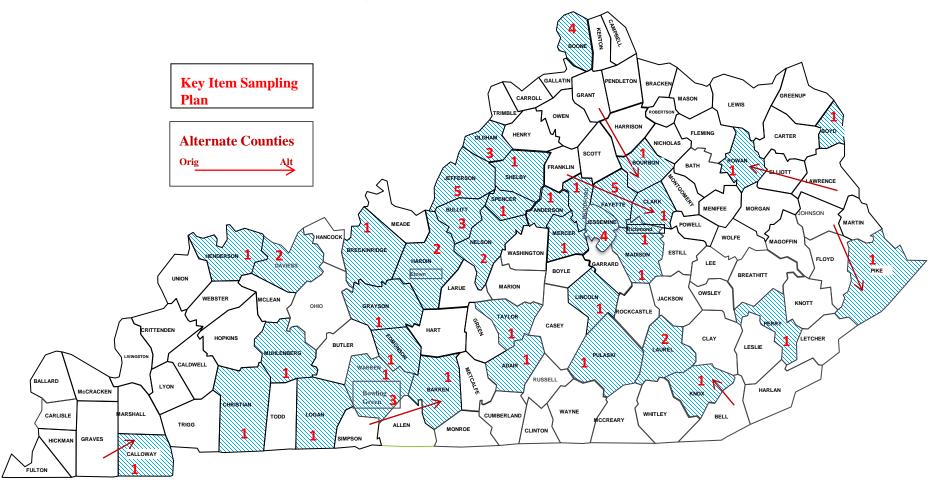
Phase 1

Data Collection Process

- Followed DOE data collection protocol -<u>www.energycodes.gov/compliance/energy-code-field-studies</u>
 - Randomized Sampling Plan
 - 8 Key Items to be Observed
 - Minimum of 63 Observations of Each Key Item
 - No Assumed or Default Values
 - Single Visit to a Given Home
 - All Collected Data is Anonymous
 - Statistically Significant Results
- Survey team spent about 5 months collecting field data
- Data QA/QC before uploading to PNNL
- A stakeholder group was established to monitor and guide the project

Phase 1 Data Collection Process

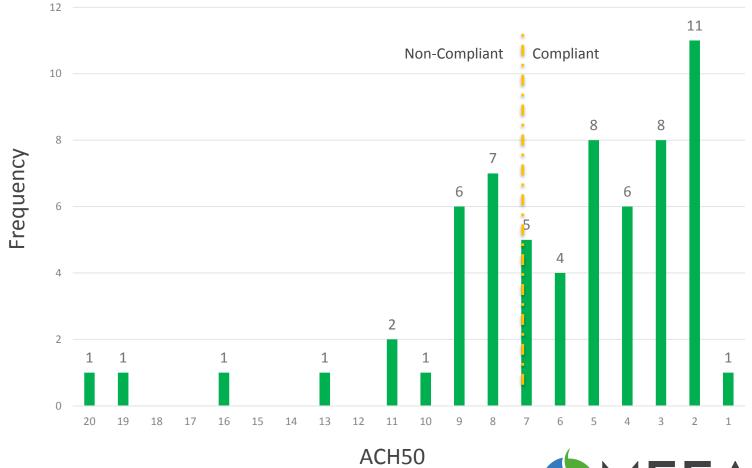
Key Item Observations


- Air Sealing (ACH50)
- Wall Insulation (R-value and Quality)
- Ceiling Insulation (R-value and Quality)
- Basement/Foundation Insulation (R-value and Quality)
- Duct Leakage (CFM25)
- Window U-Factor
- High Efficacy Lighting %
- Manual J Data (not a DOE key item)

Phase 1 Data Collection Process

- Randomized sampling plan was developed
 using permit data provided by DHBC
- The number of observations required per county was determined
 - Permits were binned by county, put in a database, randomized, and the first 63 selected became the sampling plan
- Multiple sampling plans were developed, with the final plan vetted through the stakeholder group

Key Item Sampling Plan with Alternate County Transitions


Phase 1 Data Collection Process

- Project Manager made first contact with builders, determined willingness to participate, then passed information on to the Data Collectors
- The Data Collectors followed up and made arrangement for site visit
 - Typically teams of two
 - Insulation Stage: Less than half an hour
 - Final Stage: ~ 45 minutes (diagnostic testing)
- Completed data forms were then forwarded to MEEA for upload to PNNL

Phase 1 Data Collection Process

Blower Door Results (ACH50)

Phase 1 Final Analysis

Annual Potential Compliance Savings

Key Measure		Annual Savings		
		Energy (MMBtu)	Cost (\$)	
1	Envelope Air Leakage	27,182	\$484,314	
2	Ceiling Insulation	11,372	\$215,656	
3	Exterior Wall Insulation	9,277	\$171,044	
4	Foundation Insulation	6,800	\$108,156	
5	Lighting	5,742	\$197,544	
6	Duct Leakage	2,135	\$43,142	
Total		62,508 MMBtu	\$1,219,856	

Phase 1 Final Analysis

Cumulative Potential Compliance Savings

Five-year, Ten-year, and Thirty-year Cumulative Statewide Savings for Kentucky

	Total Energy Savings (MMBtu)			Total Energy Cost Savings (\$)		
Measure	5yr	10yr	30yr	5yr	10yr	30yr
Envelope Air Leakage	407,730	1,495,010	12,639,630	\$7,264,710	\$26,637,270	\$225,206,010
Ceiling Insulation	170,580	625,459	5,287,971	\$3,234,844	\$11,861,095	\$100,280,170
Exterior Wall Insulation	139,155	510,235	4,313,805	\$2,565,660	\$9,407,420	\$79,535,460
Foundation Insulation	101,997	373,989	3,161,903	\$1,622,345	\$5,948,598	\$50,292,689
Lighting	86,130	315,810	2,670,030	\$2,963,160	\$10,864,920	\$91,857,960
Duct Leakage	32,025	117,425	992,775	\$647,130	\$2,372,810	\$20,061,030
TOTAL	937,620	3,437,939	29,066,211	\$18,297,844	\$67,092,095	\$567,233,170

Phase 1

Oversizing Analysis

- A simplified analysis was used to determine the potential kW reduction from right-sized air-conditioners and heat pumps
 - The oversizing factors calculated from the Wrightsoft Manual J analysis were used to calculate an average oversizing factor
 - The average factor was then used as an input to the *EnergyPlus* sizing factor field and an annual simulation was conducted to estimate the impact on peak demand
- The overall potential kW reduction from right-sized HVAC equipment was found to be 2,373 kW in a typical year for the state of Kentucky
- The study also found that an additional 2,987 kW of annual demand savings was available from measure level compliance

www.mwalliance.org/sites/default/files/media/ More-Bang-for-the-Buck-Final.pdf

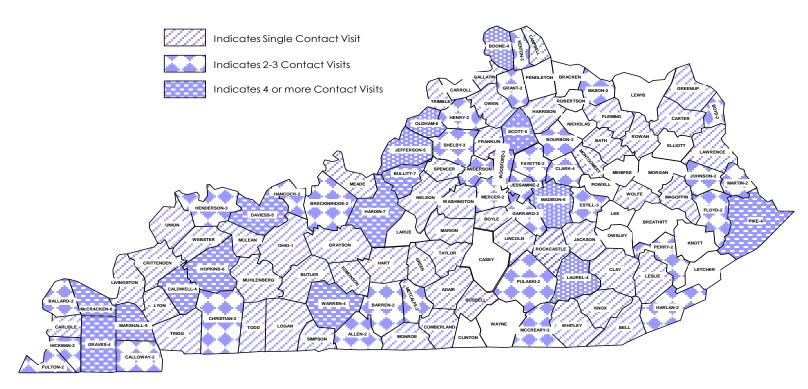
Phase 1 Customer Cost of Oversizing

Consumer Cost of AC Oversizing

- Three main AC oversizing costs impact the consumer:
 - 1. Capital Cost **Increased cost** of oversized unit
 - 2. Unit Life Oversized units tend to **short-cycle**, reducing useful life of unit
 - 3. Performance/Efficiency Oversized fixed-capacity units tend to **operate less efficiently** than right-sized units. They can also lead to dehumidification (moisture) problems and other indoor comfort issues.
- The KY baseline study found that **90%** of new homes had AC units oversized by an average of **1.2 tons**.
- Expanding that to include replacement units means between **\$20 Million and \$37 Million** in unnecessary annual **consumer expense** in oversized HVAC units.

PHASE TWO

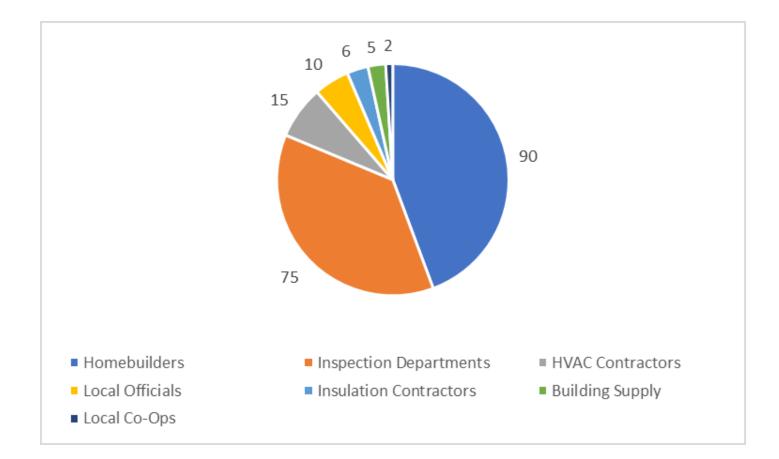
- Phase 2 intervention based on findings of Phase 1
- Core idea of Phase 2 education and training was to focus on code officials and builders, and go to where they are
- Supporting this concept was a pro-active circuit rider, in-person training delivered in all parts of the state, and online training available 24/7
- Keep **high program profile** by presenting at HBA meetings, code official associations, conferences, etc. Establish a "culture of compliance"



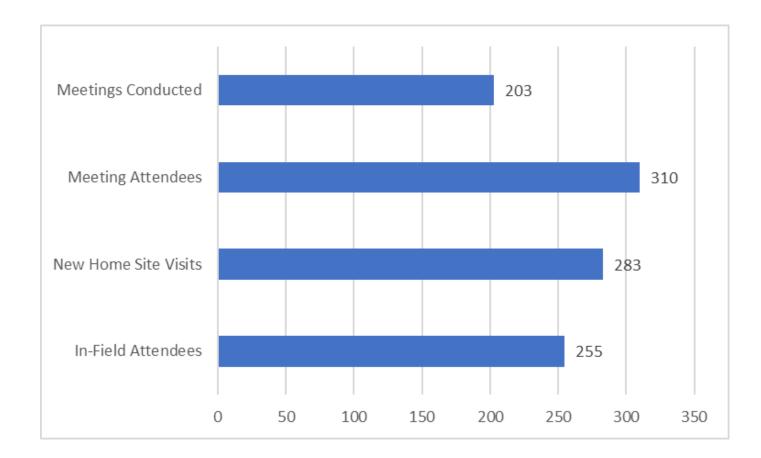
Circuit Rider Program

- Hired a retired code official as circuit rider (half-time)
- Pro-actively reach out to stakeholders on a regular basis
- Provide individual assistance to code officials, homebuilders and other energy code stakeholders
- Establish and maintain a trusted energy code advisor relationship

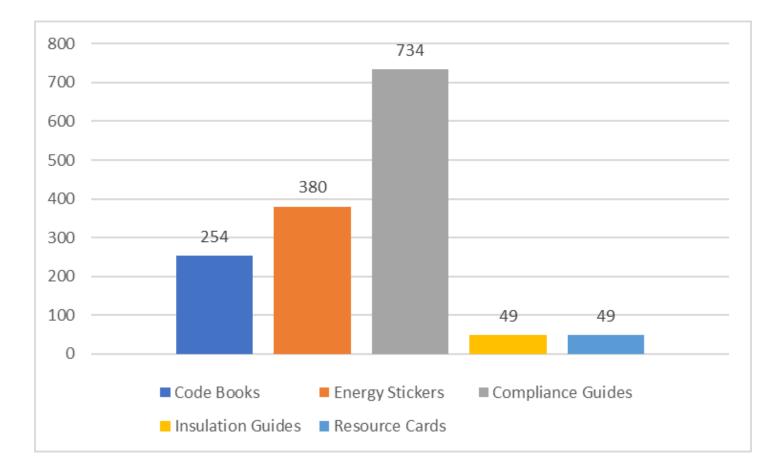
Kentucky Circuit Rider Visits Through 09/27/2017


Circuit Rider Miles

Circuit Rider Travelled 32,481



Circuit Rider Contacts



Circuit Rider Contacts

Circuit Rider Information Distribution

Circuit Rider Observations

- Re-visits revealed noticeable improvement in energy code inspections and compliance.
- Several inspection departments increased the number of inspection to address energy code requirements.
- 99% of meeting attendees were appreciative of the information and resources provided.
- Improvements seen in the field include; better air sealing, improved insulation installation, increased energy sticker use and better understanding of how the energy code components work together to create a healthy, energy efficient home.

In-Person Training

- **25 full day** training sessions offered in 14 different counties across the state (2016/17)
- 1 half day class for stakeholders
- Classes approved for **CEU credits** by:
 - Division of HVAC
 - Division of Building Codes Enforcement
 - International Code Council (ICC)
 - Building Performance Institute (BPI)

Training Topics

- HVAC Design and Sizing Principals
- Air Sealing and Insulation Principals
- Common Compliance Challenges
- All course slides are available on the DEDI website at: http://energy.ky.gov/efficiency/Pages/energycodesurvey.aspx

In-Person Training

Total Attendance

- Common Compliance Challenges...106

> TOTAL TRAINEES = 381 People

> Over 3,000 trainee contact hours

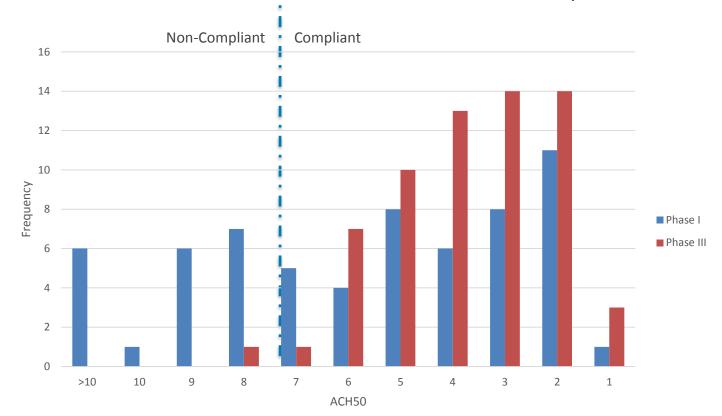
Phase 2

Phase 2 Successes and Challenges

- Online videos: 638 views <u>bit.ly/Kycodes</u>
- Email / Hotline: 4 inquiries
- Insulation Installation Guide
 - <u>http://www.mwalliance.org/sites/default/files/Insul</u> <u>ation-Installation-Grading.pdf</u>
- Responsiveness of Commissioners Office
- Efforts to effect change in code interpretation
- 29 invitations to attend and speak at various regional association and board meetings

PHASE **THREE**

Preliminary Savings Analysis


Caveats

- Please note the word "Preliminary"
- Analysis does not include savings associated with Manual J right-sizing
- Preliminary analysis is only "overall" statewide savings
- kWh, kW, and Therm savings will be part of PNNL final analysis

Preliminary Savings Analysis Air Sealing (7ACH50)

Phase 1: 32% non-compliant Phase 3: 2% non-compliant

Preliminary Savings Analysis

Preliminary Results

- The preliminary analysis found an overall ~18% improvement between Phase 1 and Phase 3
- That's about 11,250
 MMBTU annually
- Or about **\$220,000** in annual savings

Preliminary Savings Analysis **Preliminary Results**

- The preliminary analysis also found the ten year cumulative savings to be about 620,000 MMBTU
- That's about \$11,320,000 in total savings

Next Steps

- Final PNNL analysis
- Phase 3 right-sizing / demand analysis
- Continue discussions about implications of project results and opportunities

SAVE THE DATE 2018 **NIDWEST** ENERGY-TION SOLU CONFERENCE FEBRUARY 7-9, 2018

CHICAGO, IL

Chris Burgess <u>cburgess@mwalliance.org</u> 312-784-7261

